求在二維勢(shì)場(chǎng)中運(yùn)動(dòng)的粒子的能級(jí)和本征函數(shù)。
您可能感興趣的試卷
你可能感興趣的試題
求在一維勢(shì)場(chǎng)中運(yùn)動(dòng)的粒子的能級(jí)。
最新試題
Dirac發(fā)現(xiàn)兩個(gè)物理量的對(duì)易子xy-yx等于()乘以這兩個(gè)物理量的經(jīng)典泊松括號(hào){x,y}。
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級(jí)的寬度時(shí),需要使用Heisenberg()不確定關(guān)系。
一維運(yùn)動(dòng)的粒子被束縛在0<x<a的范圍內(nèi),其波函數(shù)為,則粒子在0到a/2區(qū)域內(nèi)出現(xiàn)的概率為()。
多世界解釋認(rèn)為人們測(cè)量時(shí)系統(tǒng)的波函數(shù)沒(méi)有坍縮,但觀測(cè)的一瞬間宇宙分裂為多個(gè)宇宙,不同宇宙中的同一個(gè)觀察者()進(jìn)行交流和通信。
?由de Broglie關(guān)系和()方程也能導(dǎo)出定態(tài)Schr?dinger方程。
當(dāng)α=Ω=0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說(shuō)明處于定態(tài)n的諧振子的總能量()。
?由經(jīng)典物理的Newton定律和Maxwell電磁理論,原子會(huì)不穩(wěn)定的,電子()坍縮到原子核。
Schr?dinger求解氫原子的定態(tài)Schr?dinger方程,得到了Bohr能級(jí)公式,他認(rèn)為量子化的本質(zhì)是微分方程的()問(wèn)題。