您可能感興趣的試卷
你可能感興趣的試題
證明:如果算符都是厄米的,那么也是厄米的
試求算符的本征函數(shù)。
氫原子處在基態(tài)
(1)r的平均值;
(2)勢(shì)能的平均值;
(3)最可幾半徑;
(4)動(dòng)能的平均值;
(5)動(dòng)量的幾率分布函數(shù)。
最新試題
一維諧振子基態(tài)波函數(shù)為,式中,則諧振子在該態(tài)時(shí)勢(shì)能的平均值為()。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
光量子的本質(zhì)是()電磁場(chǎng)。
利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問(wèn)題,歸結(jié)為求解()矩陣的本征值。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
設(shè)電子處于動(dòng)量為的態(tài),將哈密頓量中的作為微擾,寫出能量本征值和本征函數(shù)到一級(jí)近似。
?Heisenberg矩陣力學(xué)的力學(xué)量隨時(shí)間變化,而量子態(tài)不隨時(shí)間變化,由此可知Heisenberg矩陣力學(xué)實(shí)質(zhì)上是()繪景下能量表象的量子力學(xué)。
應(yīng)用對(duì)應(yīng)原理,從Einstein的()可以唯像地估算光譜線的強(qiáng)度。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。