問答題
證明非線性方程存在惟一實根,確定區(qū)間(a,b)使迭代序列對于任意的初值點x0∈(a,b)均收斂(提示:利用收斂性定理)。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
將下述變上限求積公式:化為等價的常數(shù)分非常初值問題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時的定積分值。
題型:問答題
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應的特征向量:;取初始向量。
題型:問答題
試求出實對稱矩陣的所有特征值(視情況確定精確或近似特征值)。
題型:問答題
試求出實對稱矩陣的所有特征值(視情況確定精確或近似特征值)。
題型:問答題
試以帶原點位移的QR分解方法求出矩陣的全部特征值。
題型:問答題
寫出求解常微分方程初值問題,y(0)=2,0≤x≤2的經典四階Runge-Kutta格式;取步長h=0.2,手工計算到x=0.4。
題型:問答題
寫出求解常微分方程初值問題的Euler格式和改進Euler格式;取步長h=0.1,手工計算到x=1,精確解為。
題型:問答題
寫出求解常微分方程初值問題,y(0)=0的Euler格式;精確解為。
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2,首先利用精確解表達式y(tǒng)=x+e-x,計算出啟動值y(0.1)=1.005,y(0.2)=1.019,y(0.3)=1.041;再分別應用四步四階顯式Milne格式和三步四階隱式Hamming格式。取步長h=0.1,手工計算到x=0.5
題型:問答題
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長h=0.1,手工計算到x=0.1,精確解為。
題型:問答題