波函數(shù)Ψ1、Ψ2=cΨ1(c為任意常數(shù)),則()
A.A
B.B
C.C
D.D
您可能感興趣的試卷
你可能感興趣的試題
若波函數(shù)Ψ(x,t)歸一化,則()
A.A
B.B
C.C
D.D
已知波函數(shù)其中定態(tài)波函數(shù)是()
A.ψ2
B.ψ1和ψ2
C.ψ3
D.ψ3和ψ4
A.波動(dòng)性是由于大量的微粒分布于空間而形成的疏密波
B.微粒被看成在三維空間連續(xù)分布的某種波包
C.單個(gè)微觀粒子具有波動(dòng)性和粒子性
A.單值、正交、連續(xù)
B.歸一、正交、完全性
C.連續(xù)、有限、完全性
D.單值、連續(xù)、有限
設(shè)ψ1(x)和ψ2(x)分別表示粒子的兩個(gè)可能運(yùn)動(dòng)狀態(tài),則它們線性迭加的態(tài)c1ψ1(x)+c2ψ2(x)的幾率分布為()
A.A
B.B
C.C
D.D
最新試題
Einstein對(duì)比了短波低能量密度時(shí)的黑體輻射和n個(gè)原子組成的粒子體系的(),提出了光量子假設(shè)。
?Bohr互補(bǔ)性原理是哥本哈根解釋的兩個(gè)原理之一,依此原理經(jīng)典概念描述的相互矛盾的物理現(xiàn)象()出現(xiàn)在同一實(shí)驗(yàn)中。
?de Broglie認(rèn)為Bohr氫原子的軌道長(zhǎng)度應(yīng)該是電子波長(zhǎng)的()倍,由此導(dǎo)出角動(dòng)量量子化,進(jìn)而得到氫原子的Bohr能級(jí)公式。
?經(jīng)典儀器測(cè)量系統(tǒng)時(shí)會(huì)()得到系統(tǒng)的某個(gè)本征值,同時(shí)系統(tǒng)波函數(shù)也坍縮到系統(tǒng)相應(yīng)的這個(gè)本征態(tài)。
設(shè)諧振子的初態(tài)為基態(tài)和第一激發(fā)態(tài)的疊加態(tài):(1)求出歸一化常數(shù)A;(2)求出諧振子任意時(shí)刻的狀態(tài);(3)計(jì)算在態(tài)中能量的期待值。
?Heisenberg用他的量子化條件研究一維簡(jiǎn)諧振動(dòng),得到一維諧振子的動(dòng)能和勢(shì)能之和只是量子數(shù)n的函數(shù),這說(shuō)明處于定態(tài)n的諧振子的總能量()。
?粒子的波函數(shù)為,則t時(shí)刻粒子出現(xiàn)在空間的概率為()。
由原子激發(fā)態(tài)平均壽命估算該激發(fā)態(tài)能級(jí)的寬度時(shí),需要使用Heisenberg()不確定關(guān)系。
1921年Ladenburg建立了經(jīng)典色散理論的強(qiáng)度因子和Einstein()之間的聯(lián)系,第一次把經(jīng)典的色散理論和量子的能級(jí)躍遷聯(lián)系起來(lái)。
一維諧振子能級(jí)的簡(jiǎn)并度是()。