為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息。設(shè)定原信息為a0a1a2,a∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中,,運算規(guī)則為:,例如原信息為111,則傳輸信息為01111。傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯,則下列接收信息一定有誤的是()。
A.11010
B.01100
C.10111
D.00011
您可能感興趣的試卷
你可能感興趣的試題
A.θ>,m>n
B.θ>φ,m
C.θ<φ,m
D.θ<φ,m>n,
已知命題,則是()。
A.A
B.B
C.C
D.D
設(shè)函數(shù)f(x0)在x處可導(dǎo),則(),
A.-f′(x0)
B.f′(-x0)
C.f′(x0)
D.2f′(x0)
A.AC
B.ABC
C.AB-BC
D.AC+BC
A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實數(shù)λ,使得a=λb
D.若存在實數(shù)λ,使得a=λb,則|a+b|=|a|-|b|
最新試題
求.
已知直線l:ax+y=1在矩陣對應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實數(shù)a,b的值;(2)若點P(x0,y0),在直線l上,且,求點P的坐標(biāo)。
高中"方程的根與函數(shù)的零點"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系,②理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。③通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系。掌握函數(shù)零點存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計一個問題引入,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計問題鏈(至少包含三個問題),并說明設(shè)計意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個實例和三個問題,并說明設(shè)計意圖;(4)確定本節(jié)課的教學(xué)重點;(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過實例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應(yīng)的問題,體會等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對日常生活中的實際問題進(jìn)行分析,引導(dǎo)學(xué)生通過觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識解決一些簡單的問題,進(jìn)行等差數(shù)列通項公式應(yīng)用的實踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達(dá)式得到對等差數(shù)列相應(yīng)問題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個實例,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計至少兩個問題,讓學(xué)生用等差數(shù)列求解,并說明設(shè)計意圖;(3)確定本節(jié)課的教學(xué)重點;(4)作為高中階段的重點內(nèi)容,其難點是什么?(5)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
案例:某教師在對基本初等函數(shù)進(jìn)行教學(xué)時,給學(xué)生出了如下一道練習(xí)題:問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。
請以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計意圖
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。
已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點D,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請問是否存在直線L滿足條件:①過C2的焦點F;②與C1交不同兩點M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當(dāng)x∈(0,x1)時,證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。