您可能感興趣的試卷
你可能感興趣的試題
A.合作學習
B.探究學習
C.機械學習
D.自主學習
A.等價
B.相似
C.合同
D.正交
設則必有()。
A.AP1P2=B
B.AP2P1=B
C.P1P2A=B
D.P2P1A=B
A.算法初步
B.基本初等函數(shù)Ⅱ(三角函數(shù))
C.平面上的向量
D.三角恒等變換
最新試題
已知函數(shù)f(x)=x-alnx(a∈R)(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學片斷,請閱讀后回答問題:創(chuàng)設問題情境,從學生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學會納悶,今天老師上數(shù)學課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學習的內容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學有什么好處?(2)簡單談談數(shù)學教學過程中怎樣調動學生的學習熱情激發(fā)學習興趣。
高中"隨機抽樣"設定的教學目標如下:①通過對具體的案例分析,逐步學會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務:(1)根據教學目標①,設計至少兩個問題,并說明設計意圖;(2)根據教學目標②,給出至少兩個實例,并說明設計意圖;(3)根據教學目標③,設計問題鏈(至少包含兩個問題),并說明設計意圖;(4)相對義務教育階段的統(tǒng)計教學,本節(jié)課的教學重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學內容對后續(xù)哪些內容的學習有直接影響?
設f(x),g(x)在[0,1]上的導數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
設f(x),g(x)在[a,b]上連續(xù),且滿足
甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關成功的概率;(2)設甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學期望。
已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項公式。
在某次海軍演習中,已知甲驅逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅逐艦與乙護衛(wèi)艦的距離為()海里。
一商家銷售某種商品的價格滿足關系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?
高中"方程的根與函數(shù)的零點"(第一節(jié)課)設定的教學目標如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領會函數(shù)零點與相應方程實數(shù)根之間的關系,②理解提出零點概念的作用,溝通函數(shù)與方程的關系。③通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關系。掌握函數(shù)零點存在性的判斷。完成下列任務:(1)根據教學目標,設計一個問題引入,并說明設計意圖;(2)根據教學目標①,設計問題鏈(至少包含三個問題),并說明設計意圖;(3)根據教學目標③,給出至少一個實例和三個問題,并說明設計意圖;(4)確定本節(jié)課的教學重點;(5)作為高中階段的基礎內容,其難點是什么?(6)本節(jié)課的教學內容對后續(xù)哪些內容的學習有直接影響?