最新試題
多自由度系統(tǒng),C為比例阻尼模型。按無(wú)阻尼情況求得各階主振型,并構(gòu)成模態(tài)矩陣。則在模態(tài)疊加法的解法過(guò)程中()。
如圖所示系統(tǒng),懸臂梁的等效剛度為,則整個(gè)系統(tǒng)的等效剛度為()。
?一長(zhǎng)為l的簡(jiǎn)支梁中部有一個(gè)集中質(zhì)量塊M=ρAl,如圖所示。梁的抗彎剛度EJ,密度ρ和截面積A均為已知。A同學(xué)采取單自由度的簡(jiǎn)化方式,將簡(jiǎn)支梁視為剛度為的彈簧,很快給出系統(tǒng)基頻的估計(jì)值ω1A;同學(xué)B覺(jué)得此法過(guò)于簡(jiǎn)化,可能存在較大誤差,于是他決定采用連續(xù)體近似解法中的假設(shè)模態(tài)法來(lái)求解,假設(shè)振型取為,得到基頻估計(jì)值ω1B。問(wèn)為多少?()
關(guān)于均勻等截面,?下列各項(xiàng)中正確的有()。
試求圖a所示剛架的自振頻率和主振型。EI=常數(shù)。
如圖,在水平面xy內(nèi),質(zhì)點(diǎn)m通過(guò)三根互成120°的彈簧(剛度系數(shù)均為k)與固定端連接,假設(shè)質(zhì)點(diǎn)做微幅振動(dòng)。以質(zhì)點(diǎn)在x和y兩個(gè)方向上的位移為廣義坐標(biāo)建立動(dòng)力學(xué)方程,求系統(tǒng)的固有頻率ω1,ω2和V1,V2主振型()。
?如圖所示,一端固定,一端自由的均勻桿,質(zhì)量為m,彈性模量為E,截面積為A,長(zhǎng)度為l,在自由端有一彈簧常數(shù)為k的軸向彈簧支承。設(shè)桿縱向微振動(dòng)的固有頻率為ω,則以下說(shuō)法正確的是()(選項(xiàng)中)。
?如圖懸臂梁端有一小質(zhì)量塊m,質(zhì)量塊同時(shí)被兩根剛度系數(shù)為k的彈簧所支撐,彈簧與地面夾角均為45°,梁的抗彎剛度EJ,長(zhǎng)度l均為已知?,F(xiàn)將此系統(tǒng)等效為一單自由度系統(tǒng),請(qǐng)給出其固有頻率()。
如圖所示主動(dòng)隔振系統(tǒng),,并記彈性力和阻尼力的合力為,下列說(shuō)法錯(cuò)誤的是()。
?對(duì)于梁的橫向微振動(dòng)問(wèn)題,以下說(shuō)法正確的是()。