設(shè)t=0時(shí),體系的狀態(tài)為,求體系的平均動(dòng)量和平均動(dòng)能。
您可能感興趣的試卷
你可能感興趣的試題
氫原子處于基態(tài)求動(dòng)能的平均值。
一維諧振子處在基態(tài)求勢(shì)能的平均值。
求球面波的幾率密度和幾率流密度。
驗(yàn)證:各向同性的球面波滿足自由粒子的薛定格方程。
最新試題
?Bohr互補(bǔ)性原理是哥本哈根解釋的兩個(gè)原理之一,依此原理經(jīng)典概念描述的相互矛盾的物理現(xiàn)象()出現(xiàn)在同一實(shí)驗(yàn)中。
效仿Einstein的做法,Born把波函數(shù)也視為向?qū)?chǎng),該場(chǎng)決定了粒子在某一向?qū)窂降模ǎ?,向?qū)?chǎng)本身沒(méi)有能量和動(dòng)量。
?Bohm提出了簡(jiǎn)化版的量子態(tài)糾纏態(tài),即兩個(gè)自旋為()原子的糾纏態(tài)。
熱輻射的峰值波長(zhǎng)與輻射體溫度之間的關(guān)系被維恩位移定律:表示,其中b=2.8978×10-3m·K。求人體熱輻射的峰值波長(zhǎng)(設(shè)體溫為37℃)。
利用Schr?dinger方程求解Stark效應(yīng)簡(jiǎn)并微擾問(wèn)題,歸結(jié)為求解()矩陣的本征值。
?經(jīng)典儀器測(cè)量系統(tǒng)時(shí)會(huì)()得到系統(tǒng)的某個(gè)本征值,同時(shí)系統(tǒng)波函數(shù)也坍縮到系統(tǒng)相應(yīng)的這個(gè)本征態(tài)。
當(dāng)α≠0,Ω≠0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。
?哥本哈根解釋看來(lái)經(jīng)典因果律涉及到測(cè)量時(shí)()成立。
被激發(fā)到n=20激發(fā)態(tài)的氫原子退激時(shí)輻射出()種波長(zhǎng)的譜線。(不考慮精細(xì)結(jié)構(gòu))
當(dāng)α=Ω=0時(shí),寫出能量本征值和相應(yīng)的本征態(tài)。