A.0.821
B.1.224
C.1.458
D.0.716
您可能感興趣的試卷
你可能感興趣的試題
A.1比特
B.2.6比特
C.3.2比特
D.3.8比特
A.傅立葉變換
B.特征加權(quán)
C.漸進(jìn)抽樣
D.維歸約
A.2
B.3
C.3.5
D.5
A.特征提取
B.特征修改
C.映射數(shù)據(jù)到新的空間
D.特征構(gòu)造
A.嵌入
B.過濾
C.包裝
D.抽樣
最新試題
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
要將工作申請分為兩類,并使用密度估計(jì)來檢測離職申請人,我們可以使用生成分類器。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
由于決策樹學(xué)會了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。