A.冗余屬性不會(huì)對(duì)決策樹(shù)的準(zhǔn)確率造成不利的影響
B.子樹(shù)可能在決策樹(shù)中重復(fù)多次
C.決策樹(shù)算法對(duì)于噪聲的干擾非常敏感
D.尋找最佳決策樹(shù)是NP完全問(wèn)題
您可能感興趣的試卷
你可能感興趣的試題
A.KNN
B.SVM
C.Bayes
D.神經(jīng)網(wǎng)絡(luò)
A.DBSCAN
B.C4.5
C.K-Mean
D.EM
A.與同一時(shí)期其他數(shù)據(jù)對(duì)比
B.可視化
C.基于模板的方法
D.主觀興趣度量
A.系數(shù)
B.幾率
C.Cohen度量
D.興趣因子
A.頻繁子集挖掘
B.頻繁子圖挖掘
C.頻繁數(shù)據(jù)項(xiàng)挖掘
D.頻繁模式挖掘
最新試題
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問(wèn)題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來(lái)進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。
無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過(guò)度擬合。
使用正則表達(dá)式可以找到一個(gè)文本文件中所有可能出現(xiàn)的手機(jī)號(hào)碼。
使用偏差較小的模型總是比偏差較大的模型更好。