A.去掉數(shù)據(jù)中的噪聲
B.對數(shù)據(jù)進行匯總和聚集
C.使用概念分層,用高層次概念替換低層次“原始”數(shù)據(jù)
D.將屬性按比例縮放,使之落入一個小的特定區(qū)間
您可能感興趣的試卷
你可能感興趣的試題
A.填補數(shù)據(jù)種的空缺值
B.集成多個數(shù)據(jù)源的數(shù)據(jù)
C.得到數(shù)據(jù)集的壓縮表示
D.規(guī)范化數(shù)據(jù)
A.概念分層
B.離散化
C.分箱
D.直方圖
A.孤立點
B.空缺值
C.測量變量中的隨即錯誤或偏差
D.數(shù)據(jù)變換引起的錯誤
A.空間填充曲線
B.散點圖矩陣
C.平行坐標
D.圓弓分割
A.標稱屬性
B.二元屬性
C.序數(shù)屬性
D.數(shù)值屬性
最新試題
數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應(yīng)的數(shù)據(jù)。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。
通常,當試圖從大量觀察中學習具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓練數(shù)據(jù)的可能性。
最大似然估計的一個缺點是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
當數(shù)據(jù)集標簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
支持向量機不適合大規(guī)模數(shù)據(jù)。
通過統(tǒng)計學可以推測擲兩個撒子同時選中3點的幾率。
使用正則表達式可以找到一個文本文件中所有可能出現(xiàn)的手機號碼。
任務(wù)調(diào)度系統(tǒng)的設(shè)計與實現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標從目標源獲取數(shù)據(jù)。