判斷題基于鄰近度的離群點(diǎn)檢測方法不能處理具有不同密度區(qū)域的數(shù)據(jù)集。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
題型:判斷題
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
題型:判斷題
無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
題型:判斷題
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
題型:判斷題
通過統(tǒng)計(jì)學(xué)可以推測擲兩個(gè)撒子同時(shí)選中3點(diǎn)的幾率。
題型:判斷題
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
題型:判斷題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
題型:判斷題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
題型:判斷題
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
題型:判斷題
由于決策樹學(xué)會(huì)了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
題型:判斷題