最新試題

設(shè)隨機變量的概率密度為,求E(X)和D(X)。

題型:問答題

求下列矩陣的秩:

題型:問答題

甲乙兩人五門課程的測驗成績(每門課程滿分均為100分)為又經(jīng)統(tǒng)計,該年級五門課程這次測驗的平均分數(shù)分別為70分、85分、65分、75分、68分,標準差分別為9分、6分、11分、8分、10分,試運用標準分數(shù)來比較甲乙這次測驗總分的前后順序。

題型:問答題

對圓的直徑作近似測量,其值均勻分布在區(qū)間[a,b]上,求圓的面積的數(shù)學(xué)期望。

題型:問答題

設(shè)燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。

題型:問答題

已知離散隨機變量X的分布列為,求E(X2),E(X-1)

題型:問答題

某車間有400臺同類型機器,工作相互獨立,每臺機器需要的電功率為θ瓦,由于工藝關(guān)系,每臺機器開動時間占工作總時間的3/4,問應(yīng)該供應(yīng)多少瓦電力才能以99%的概率保證車間有足夠的電功率?

題型:問答題

某機構(gòu)調(diào)查吸煙者月均抽煙支出,假定支出近似服從正態(tài)分布,現(xiàn)隨機抽取26人,支出均值為80元,標準差為20元,試估計全部吸煙者抽煙月均支出的0.95置信區(qū)間。

題型:問答題

樣本值:54,67,68,78,70,66,67,70,65,69,分別計算樣本平均值和樣本方差。

題型:問答題

某學(xué)校600名學(xué)生參加計算機應(yīng)用課程考試的成績近似地服從N(75,82)試估計成績在[90,100],[70,80),[0,60)分數(shù)段內(nèi)的人數(shù)。

題型:問答題