判斷題選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
題型:判斷題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
題型:判斷題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。
題型:判斷題
通常,當試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
題型:判斷題
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
題型:判斷題
當反向傳播算法運行到達到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
題型:判斷題
當數(shù)據(jù)集標簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
題型:判斷題
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
題型:判斷題
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
題型:判斷題
經(jīng)常跟管理層打交道并進行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。
題型:判斷題