A.分類
B.聚類
C.關(guān)聯(lián)分析
D.隱馬爾可夫鏈
您可能感興趣的試卷
你可能感興趣的試題
A.關(guān)聯(lián)規(guī)則發(fā)現(xiàn)
B.聚類
C.分類
D.自然語言處理
最新試題
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會(huì)成倍的降低訪問時(shí)間。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
通過統(tǒng)計(jì)學(xué)可以推測擲兩個(gè)撒子同時(shí)選中3點(diǎn)的幾率。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
要將工作申請分為兩類,并使用密度估計(jì)來檢測離職申請人,我們可以使用生成分類器。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。