單項(xiàng)選擇題關(guān)于混合模型聚類算法的優(yōu)缺點(diǎn),下面說(shuō)法正確的是()。

A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時(shí),混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時(shí)不會(huì)存在問(wèn)題


您可能感興趣的試卷

你可能感興趣的試題

1.單項(xiàng)選擇題以下哪個(gè)聚類算法不是屬于基于原型的聚類()。

A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE

2.單項(xiàng)選擇題以下屬于可伸縮聚類算法的是()。

A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM

5.單項(xiàng)選擇題關(guān)于K均值和DBSCAN的比較,以下說(shuō)法不正確的是()。

A.K均值丟棄被它識(shí)別為噪聲的對(duì)象,而DBSCAN一般聚類所有對(duì)象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會(huì)合并有重疊的簇

最新試題

選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。

題型:判斷題

當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。

題型:判斷題

訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。

題型:判斷題

如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。

題型:判斷題

當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。

題型:判斷題

使決策樹(shù)更深將確保更好的擬合度,但會(huì)降低魯棒性。

題型:判斷題

數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問(wèn)是線性訪問(wèn),但是做了索引的數(shù)據(jù)訪問(wèn)會(huì)成倍的降低訪問(wèn)時(shí)間。

題型:判斷題

無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。

題型:判斷題

當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。

題型:判斷題

任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。

題型:判斷題