A.所涉及的算法的復(fù)雜性
B.所涉及的數(shù)據(jù)量
C.計算結(jié)果的表現(xiàn)形式
D.是否使用了人工智能技術(shù)
您可能感興趣的試卷
你可能感興趣的試題
A.目標(biāo)市場分析
B.購物籃分析
C.模式識別
D.信用卡欺詐檢測
A.二分K均值
B.MST
C.Chameleon
D.組平均
A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Chameleon
A.高維性
B.規(guī)模
C.稀疏性
D.噪聲和離群點
A.精度
B.Rand統(tǒng)計量
C.Jaccard系數(shù)
D.召回率
最新試題
隨機(jī)梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應(yīng)的存儲系統(tǒng)。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。
使用偏差較小的模型總是比偏差較大的模型更好。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
最大似然估計的一個缺點是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
通過統(tǒng)計學(xué)可以推測擲兩個撒子同時選中3點的幾率。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。