A.平滑
B.聚集
C.數(shù)據(jù)概化
D.規(guī)范化
您可能感興趣的試卷
你可能感興趣的試題
A.數(shù)據(jù)清理
B.數(shù)據(jù)集成
C.數(shù)據(jù)變換
D.數(shù)據(jù)歸約
A.去掉數(shù)據(jù)中的噪聲
B.對數(shù)據(jù)進行匯總和聚集
C.使用概念分層,用高層次概念替換低層次“原始”數(shù)據(jù)
D.將屬性按比例縮放,使之落入一個小的特定區(qū)間
A.填補數(shù)據(jù)種的空缺值
B.集成多個數(shù)據(jù)源的數(shù)據(jù)
C.得到數(shù)據(jù)集的壓縮表示
D.規(guī)范化數(shù)據(jù)
A.概念分層
B.離散化
C.分箱
D.直方圖
A.孤立點
B.空缺值
C.測量變量中的隨即錯誤或偏差
D.數(shù)據(jù)變換引起的錯誤
最新試題
數(shù)據(jù)復制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個角度來設計和實現(xiàn)的。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計算機手段來完成。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
通過統(tǒng)計學可以推測擲兩個撒子同時選中3點的幾率。
當反向傳播算法運行到達到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。
根據(jù)數(shù)據(jù)科學家與數(shù)據(jù)工程師對于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對應的存儲系統(tǒng)。
當MAP中使用的先驗是參數(shù)空間上的統(tǒng)一先驗時,MAP估計等于ML估計。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓練集上實現(xiàn)更好的分類精度。
使用正則表達式可以找到一個文本文件中所有可能出現(xiàn)的手機號碼。