最新試題

非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫(kù)來(lái)存儲(chǔ)。

題型:判斷題

假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。

題型:判斷題

數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。

題型:判斷題

支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。

題型:判斷題

使決策樹(shù)更深將確保更好的擬合度,但會(huì)降低魯棒性。

題型:判斷題

選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。

題型:判斷題

當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。

題型:判斷題

數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問(wèn)是線性訪問(wèn),但是做了索引的數(shù)據(jù)訪問(wèn)會(huì)成倍的降低訪問(wèn)時(shí)間。

題型:判斷題

通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。

題型:判斷題

使用偏差較小的模型總是比偏差較大的模型更好。

題型:判斷題