最新試題

試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。

題型:?jiǎn)柎痤}

將下述變上限求積公式:化為等價(jià)的常數(shù)分非常初值問(wèn)題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時(shí)的定積分值。

題型:?jiǎn)柎痤}

寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤1的Euler格式和改進(jìn)Euler格式;取步長(zhǎng)h=0.02,計(jì)算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。

題型:?jiǎn)柎痤}

試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。

題型:?jiǎn)柎痤}

試求出實(shí)對(duì)稱(chēng)矩陣的所有特征值(視情況確定精確或近似特征值)。

題型:?jiǎn)柎痤}

寫(xiě)出求解常微分方程初值問(wèn)題,y(1)=1,1≤x≤1.2的Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=1.1。

題型:?jiǎn)柎痤}

寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤4的Euler格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=0.2。

題型:?jiǎn)柎痤}

寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤0.6的Euler格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=0.2。

題型:?jiǎn)柎痤}

寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計(jì)算出3個(gè)啟動(dòng)值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5

題型:?jiǎn)柎痤}

試以Givens平面旋轉(zhuǎn)變換求出Hessenberg矩陣的QR分解。

題型:?jiǎn)柎痤}