某市原來(lái)都開(kāi)小車上班的唐先生統(tǒng)計(jì)了過(guò)去一年每一工作日的上班通行時(shí)間,并進(jìn)行初步處理,得到頻率分布表如下(T表示通行時(shí)間,單位為分鐘):
該市號(hào)召市民盡量減少開(kāi)車出行,以綠色低碳的出行方式支持節(jié)能減排,唐先生積極響應(yīng)政府號(hào)召,準(zhǔn)備每天從騎自行車和開(kāi)小車兩種出行方式中隨機(jī)選擇一種.如果唐先生選擇騎自行車,當(dāng)天上班的通行時(shí)間為30分鐘.將頻率視為概率,根據(jù)樣本估計(jì)總體的思想,對(duì)唐先生上班通行時(shí)間的判斷,以下正確的是()。
A.開(kāi)小車出行的通行時(shí)間的中位數(shù)為27.5分鐘
B.開(kāi)小車出行兩天的總通行時(shí)間少于40分鐘的概率為0.01
C.選擇騎自行車比開(kāi)小車平均通行時(shí)間至少會(huì)多耗費(fèi)5分鐘
D.若選擇騎自行車和開(kāi)小車的概率相等,則平均通行時(shí)間為28.5分鐘
您可能感興趣的試卷
你可能感興趣的試題
某地區(qū)為了解學(xué)生課余時(shí)間的讀書情況,隨機(jī)抽取了n名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查得到的學(xué)生日均課余讀書時(shí)間繪制成如圖所示的頻率分布直方圖,已知抽取的樣本中日均課余讀書時(shí)間低于10分鐘的有10人,則圖中的n,p的值分別為()。
A.200,0.015
B.100,0.010
C.100,0.015
D.1000,0.010
平均數(shù)和中位數(shù)都描述了數(shù)據(jù)的集中趨勢(shì),它們的大小關(guān)系和數(shù)據(jù)的分布形態(tài)有關(guān)。如圖所示的統(tǒng)計(jì)圖,記這組數(shù)據(jù)的眾數(shù)為M,中位數(shù)為N,平均數(shù)為P,則()。
A.N〈M〈P
B.M〈N〈P
C.M〈P〈N
D.P〈N〈M
已知甲、乙兩名同學(xué)在高三的六次模考中數(shù)學(xué)成績(jī)統(tǒng)計(jì)如圖,則下列說(shuō)法錯(cuò)誤的是()。
A.甲成績(jī)的極差小于乙成績(jī)的極差
B.第5次??技椎臄?shù)學(xué)成績(jī)比乙高
C.若甲、乙兩組數(shù)據(jù)的平均數(shù)分別為,則
D.若甲、乙兩組數(shù)據(jù)的方差分別為s12,s22,則
A.5
B.23
C.67
D.85
最新試題
若隨機(jī)變量X,Y相互獨(dú)立,下列表達(dá)式錯(cuò)誤的是()。
?設(shè)總體X服從正態(tài)分布N(0,σ2),X1,X2,…,Xn為其樣本,X ?與S2分別是樣本均值和樣本方差,則()。?
設(shè)總體X~N(μ,σ2),μ和σ是未知參數(shù)。為估計(jì)參數(shù)σ2的置信區(qū)間,應(yīng)選T=()作為樞軸變量,并且T服從()。
?設(shè)X1,X2,X3是來(lái)自總體X的簡(jiǎn)單隨機(jī)樣本,下列4個(gè)統(tǒng)計(jì)量中哪一個(gè)是總體均值E(X)的無(wú)偏且最有效的估計(jì)量?()
?設(shè)X1,X2,…,X_(n+m)是來(lái)自正態(tài)總體N(0,σ2)的樣本,統(tǒng)計(jì)量下列選項(xiàng)中,關(guān)于統(tǒng)計(jì)量T說(shuō)法正確的是()。
?若小孩身高Y與年齡X之間的回歸方程為y=73.93+7.19x,那么據(jù)此可以預(yù)測(cè)小孩10歲時(shí)的身高,下面正確是()。
以下三個(gè)中()可以是分布律:(1)P{X=k}=1/2×(1/3)k,k=0,1,2,……(2)P{X=k}=(1/2)k,k=1,2,3,……(3)P{X=k}=1/[k(k+1)],k=1,2,3,……
?函數(shù)y=aebx,a>0,b<0則下面能反映x,y變化規(guī)律的是()。
?已知X的分布列為P{X=-1}=1/2,P{X=0}=1/3,P{X=1}=1/6,則E(X)的值為()。
?隨機(jī)變量的數(shù)學(xué)期望是隨機(jī)變量取值的()。