A為三階矩陣,λ1,λ2,λ3為其特征值,=0的充分條件是()。
A.∣λ1∣=1,∣λ2∣〈1,∣λ3∣〈1
B.∣λ1∣〈1,∣λ2∣=∣λ3∣=1
C.∣λ1∣〈1,∣λ2∣〈1,∣λ3∣〈1
D.∣λ1∣=∣λ2∣=∣λ3∣=1
您可能感興趣的試卷
你可能感興趣的試題
A.λ1=λ2時(shí),x1,x2一定成比例
B.λ1≠λ2時(shí),λ3=λ1+λ2也是A的特征值,且對(duì)應(yīng)的特征向量為x1+x2
C.λ1≠λ2時(shí),x1+x2不可能是A的特征向量
D.λ1=0時(shí),有x1=0
A.A的n個(gè)特征向量?jī)蓛烧?br />
B.A的n個(gè)特征向量組成單位正交向量組
C.A的k重特征值λ0,有r(λ0E-A)=n-k
D.A的k重特征值λ0,有r(λ0E-A)=k
設(shè)矩陣A與B相似,其中A=,已知矩陣B有特征值1,2,3,則x=()。
A.4
B.-3
C.-4
D.3
設(shè)三階矩陣A=有三個(gè)線性無(wú)關(guān)的特征向量,則x=()。
A.-1
B.0
C.1
D.2
A.λE-A=λE-B
B.A與B有相同的特征值和特征向量
C.A與B都相似于一個(gè)對(duì)角矩陣
D.對(duì)任意常數(shù)t,tE-A與tE-B相似
最新試題
若排列21i36j87為偶排列,則i=(),j=()
下列關(guān)于可逆矩陣的性質(zhì),不正確的是()。
設(shè)五階方陣的行列式A=-2,則 kA=(-2k)。()
若A和B是同階相似方陣,則A和B具有相同的特征值。()
設(shè)行列式D=,則=-D。()
設(shè)A=,B=,C=,則(A+B)C=()
若向量a1,a2,…an線性相關(guān),則向量組內(nèi)()可被該向量組內(nèi)其余向量線性表出。
求方程組的基礎(chǔ)解系和通解。
設(shè)A=則A=()
A為任一方陣,則A+AT,AAT均為對(duì)稱陣。()