A.x+y+z=0
B.x+y+z=1
C.x+y+z=2
D.x+y+z=3
您可能感興趣的試卷
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(一)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(二)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(二)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)考前沖刺(三)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(三)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(四)
- 一級(jí)注冊(cè)結(jié)構(gòu)工程師基礎(chǔ)知識(shí)模擬試題(四)
你可能感興趣的試題
曲面z=x2+y2在(-1,2,5)處的切平面方程是:()
A.2x+4y+z=11
B.-2x-4y+z=-1
C.2x-4y-z=-15
D.2x-4y+z=-5
曲面z=y+lnx/z在點(diǎn)(1,1,1)處的法線方程是:()
A.(x-1)/1=(y-1)/1=(z-1)/-1
B.(x-1)/1=(y-1)/1=(z-1)/-2
C.(x-1)/1=(y-1)/-1=(z-1)/-2
D.x+y-z=1
在曲線x=t,y=t2,z=t3上某點(diǎn)的切線平行于平面x+2y+z=4,則該點(diǎn)的坐標(biāo)為:()
A.(-1/3,1/9,-1/27),(-1,1,-1)
B.(-1/3,1/9,-1/27),(1,1,1)
C.(1/3,1/9,1/27),(1,1,1)
D.(1/3,1/9,1/27),(-1,1,-1)
設(shè)z=arccot(x+y),則zy′等于:()
A.1/[1+(x+y)2]
B.-sec2(x+y)/[1+(x+y)2]
C.-1/[1+(x+y)2]
D.
函數(shù),在點(diǎn)(0,0)處是否連續(xù)、可導(dǎo)或可微()?
A.連續(xù)但不可導(dǎo)
B.不連續(xù)但可導(dǎo)
C.可導(dǎo)且連續(xù)
D.既不連續(xù)又不可導(dǎo)
函數(shù),則在點(diǎn)(0,0)符合下列式中哪一種情況()?
A.連續(xù)但不可微
B.連續(xù)且可導(dǎo)
C.可導(dǎo)但不可微
D.既不連續(xù)又不可導(dǎo)
z=f(x,y)在P0(x0,y0)一階偏導(dǎo)數(shù)存在是該函數(shù)在此點(diǎn)可微的什么條件()?
A.必要條件
B.充分條件
C.充要條件
D.無(wú)關(guān)條件
A.偏導(dǎo)數(shù)不連續(xù),則全微分必不存在
B.偏導(dǎo)數(shù)連續(xù),則全微分必存在
C.全微分存在,則偏導(dǎo)數(shù)必連續(xù)
D.全微分存在,而偏導(dǎo)數(shù)不一定存在
對(duì)于二元函數(shù)z=f(x,y),在點(diǎn)(x0,y0)處連續(xù)是它在該點(diǎn)處偏導(dǎo)數(shù)存在的什么條件()?
A.必要條件而非充分條件
B.充分條件而非必要條件
C.充分必要條件
D.既非充分又非必要條件
方程表示下述哪種曲線或曲面()?
A.橢球面
B.y=1平面上橢圓
C.橢圓柱面
D.橢圓柱面在平面y=0上的投影曲線
最新試題
的垂直漸進(jìn)線有()條
微分方程的含有任意常數(shù)的解是該微分方程的通解。
若連續(xù)函數(shù)y=f(x)在x0點(diǎn)不可導(dǎo),則曲線y=f(x)在(x0,f(x0))點(diǎn)沒(méi)有切線.
單調(diào)函數(shù)的導(dǎo)函數(shù)也是單調(diào)函數(shù)。
曲線x2=6y-y3在(-2,2)點(diǎn)切線的斜率為()
廣義積分e-2xdx=()
設(shè)L是從A(1,0)到B(-1,2)的線段,則曲線積分(x+y)ds等于:()
設(shè)單調(diào)可微函數(shù)f(x)的反函數(shù)為g(x),f(1)=3,f′(1)=2,f″(3)=6則g′(3)=()
設(shè)D是矩形區(qū)域:0≤x≤π/4,-1≤y≤1,則xcos2xydxdy等于:()
曲線在原點(diǎn)處的法平面方程為:()