單項(xiàng)選擇題

已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm)。可得出這個(gè)幾何體的體積是()cm3。

A.
B.
C.
D.


您可能感興趣的試卷

最新試題

已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當(dāng)k為何值時(shí),(ka-b)⊥(a+2b)。

題型:?jiǎn)柎痤}

已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時(shí)a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時(shí),求實(shí)數(shù)λ,使a+λb的值最小,并對(duì)這一結(jié)論作出幾何解釋。

題型:?jiǎn)柎痤}

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請(qǐng)問是否存在直線L滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。

題型:?jiǎn)柎痤}

高中"隨機(jī)抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問題;②結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)至少兩個(gè)問題,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個(gè)實(shí)例,并說明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計(jì)問題鏈(至少包含兩個(gè)問題),并說明設(shè)計(jì)意圖;(4)相對(duì)義務(wù)教育階段的統(tǒng)計(jì)教學(xué),本節(jié)課的教學(xué)重點(diǎn)是什么?(5)作為高中階段的起始課,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

題型:?jiǎn)柎痤}

已知直線l:ax+y=1在矩陣對(duì)應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。

題型:?jiǎn)柎痤}

求.

題型:?jiǎn)柎痤}

,(1)求An;(2)求(A+2E)n。

題型:?jiǎn)柎痤}

論述實(shí)施合作學(xué)習(xí)應(yīng)注意的幾個(gè)問題。

題型:?jiǎn)柎痤}

案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

題型:?jiǎn)柎痤}

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?

題型:?jiǎn)柎痤}