A.無(wú)序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
您可能感興趣的試卷
你可能感興趣的試題
A.無(wú)序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
A.基于類的排序方案
B.基于規(guī)則的排序方案
C.基于度量的排序方案
D.基于規(guī)格的排序方案
A.冗余屬性不會(huì)對(duì)決策樹(shù)的準(zhǔn)確率造成不利的影響
B.子樹(shù)可能在決策樹(shù)中重復(fù)多次
C.決策樹(shù)算法對(duì)于噪聲的干擾非常敏感
D.尋找最佳決策樹(shù)是NP完全問(wèn)題
A.KNN
B.SVM
C.Bayes
D.神經(jīng)網(wǎng)絡(luò)
A.DBSCAN
B.C4.5
C.K-Mean
D.EM
最新試題
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
使決策樹(shù)更深將確保更好的擬合度,但會(huì)降低魯棒性。
無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過(guò)度擬合。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。