考慮下表所示二元分類問題的數(shù)據(jù)集。
(1)計(jì)算按照屬性A和B劃分時(shí)的信息增益。決策樹歸納算法將會選擇哪個(gè)屬性?
(2)計(jì)算按照屬性A和B劃分時(shí)Gini系數(shù)。決策樹歸納算法將會選擇哪個(gè)屬性?
您可能感興趣的試卷
最新試題
數(shù)據(jù)收集中的拉模式需要通過定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對應(yīng)的數(shù)據(jù)。
使用偏差較小的模型總是比偏差較大的模型更好。
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會返回零的概率估計(jì)。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
數(shù)據(jù)存儲體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。