問(wèn)答題已知函數(shù)f(0)=6,f(1)=10,f(3)=46,f(4)=82,f(6)=212,求函數(shù)的四階均差f[0,,3,6]和二階均差f[4,1,3]。(均差的計(jì)算)
您可能感興趣的試卷
最新試題
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
題型:?jiǎn)柎痤}
設(shè)f(x)∈C2[a,b]且f(a)=f(b)=0,求證:。
題型:?jiǎn)柎痤}
給定數(shù)據(jù)表如下;試求三次樣條插值,并滿(mǎn)足條件:。
題型:?jiǎn)柎痤}
試證明線(xiàn)性二步法當(dāng)b≠-1時(shí)方法為二階,當(dāng)b=-1時(shí)方法為三階.
題型:?jiǎn)柎痤}
要使求積公式具有2次代數(shù)精確度,則x1=(),A1=()
題型:填空題
用改進(jìn)歐拉法和梯形法解初值問(wèn)題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
題型:?jiǎn)柎痤}
試導(dǎo)出計(jì)算的Newton迭代格式,使公式中(對(duì)xn)既無(wú)開(kāi)方,又無(wú)除法運(yùn)算,并討論其收斂性。
題型:?jiǎn)柎痤}
f(x)=x7+x4+3x+1,求。
題型:?jiǎn)柎痤}
證明解y′=f(x,y)的差分公式是二階的,并求出局部截?cái)嗾`差的主項(xiàng).
題型:?jiǎn)柎痤}
證明中點(diǎn)公式是二階的,并求其絕對(duì)穩(wěn)定區(qū)間
題型:?jiǎn)柎痤}