案例:某教師在對根與系數(shù)關(guān)系綜合運用教學(xué)時,給學(xué)生出了如下一道練習題:
設(shè)α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。
A.
B.8
C.18
D.不存在
某學(xué)生的解答過程如下:
利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6
所以。故選A。
問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;
(2)給出你的正確解答;
(3)指出你在解題時運用的數(shù)學(xué)思想方法。
您可能感興趣的試卷
最新試題
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長為,求圓的方程。
高中"方程的根與函數(shù)的零點"(第一節(jié)課)設(shè)定的教學(xué)目標如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系,②理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。③通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系。掌握函數(shù)零點存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標,設(shè)計一個問題引入,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標①,設(shè)計問題鏈(至少包含三個問題),并說明設(shè)計意圖;(3)根據(jù)教學(xué)目標③,給出至少一個實例和三個問題,并說明設(shè)計意圖;(4)確定本節(jié)課的教學(xué)重點;(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習有直接影響?
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會納悶,今天老師上數(shù)學(xué)課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學(xué)知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動學(xué)生的學(xué)習熱情激發(fā)學(xué)習興趣。
已知函數(shù)f(x)=x-alnx(a∈R)(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
如何理解高中數(shù)學(xué)課程的過程性目標?
高中"集合與函數(shù)概念實習作業(yè)"設(shè)定的教學(xué)目標如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;②體驗合作學(xué)習的方式,通過合作學(xué)習品嘗分享獲得知識的快樂;③在合作形式的小組學(xué)習活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實踐技能和民主價值觀。完成下列任務(wù):(1)根據(jù)教學(xué)目標,設(shè)計一個合理的課堂準備;(2)確定本節(jié)課的教學(xué)重點和難點;(3)給出本節(jié)課的教學(xué)過程。
高中"隨機抽樣"設(shè)定的教學(xué)目標如下:①通過對具體的案例分析,逐步學(xué)會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標①,設(shè)計至少兩個問題,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標②,給出至少兩個實例,并說明設(shè)計意圖;(3)根據(jù)教學(xué)目標③,設(shè)計問題鏈(至少包含兩個問題),并說明設(shè)計意圖;(4)相對義務(wù)教育階段的統(tǒng)計教學(xué),本節(jié)課的教學(xué)重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習有直接影響?
案例:某教師在對基本初等函數(shù)進行教學(xué)時,給學(xué)生出了如下一道練習題:問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系。已知點A的極坐標為,直線l的極坐標方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足