您可能感興趣的試卷
最新試題
已知,,(1)求tan2α的值:(2)求β。
請簡要描述數(shù)學(xué)應(yīng)用意識及推理能力的主要表現(xiàn)。
已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。
如何處理面向全體學(xué)生與關(guān)注學(xué)生個體差異的關(guān)系?
已知函數(shù)。(1)當(dāng)時,求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實數(shù)a的取值范圍。
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當(dāng)x∈(0,x1)時,證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。
高中"隨機抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過對具體的案例分析,逐步學(xué)會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計至少兩個問題,并說明設(shè)計意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個實例,并說明設(shè)計意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計問題鏈(至少包含兩個問題),并說明設(shè)計意圖;(4)相對義務(wù)教育階段的統(tǒng)計教學(xué),本節(jié)課的教學(xué)重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
案例:閱讀下列兩位教師的教學(xué)過程。教師甲的教學(xué)過程:師:在一個風(fēng)雨交加的夜里,從某水庫閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多。每查一個點要爬一次10km長的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?生1:直接一個個電線桿去尋找。生2:先找中點,縮小范圍,再找剩下來一半的中點。師:生2的方法是不是對呢?我們一起來考慮一下。如圖,維修工人首先從中點C查,用隨身帶的話機向兩個端點測試時,發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點D,這次發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD中點E來查。每查一次,可以把待查的線路長度縮減一半,如此查下去,不用幾次,就能把故障點鎖定在一兩根電線桿附近。師:我們可以用一個動態(tài)過程來展示一下(展示多媒體課件)。在一條線段上找某個特定點,可以通過取中點的方法逐步縮小特定點所在的范圍(即二分法思想)。教師乙的教學(xué)過程:師:大家都看過李詠主持的《幸運52》吧,今天咱也試一回(出示游戲:看商品、猜價格)。生:積極參與游戲,課堂氣氛活躍。師:競猜中,"高了"、"低了"的含義是什么?如何確定價格的最可能的范圍?生:主持人"高了、低了"的回答是判斷價格所在區(qū)間的依據(jù)。師:如何才能更快的猜中商品的預(yù)定價格?生:回答各異。老師由此引導(dǎo)學(xué)生說出"二分法"的思想,并向同學(xué)們引出二分法的概念。問題:(1)分析兩種情景引入的特點。(2)結(jié)合案例,說明為什么要學(xué)習(xí)用二分法求方程的近似解。
已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時,求實數(shù)λ,使a+λb的值最小,并對這一結(jié)論作出幾何解釋。