單項選擇題籌比數(shù)列{an},q=2,S4=1,求S8為()。

A.14
B.15
C.16
D.17


您可能感興趣的試卷

最新試題

在高中數(shù)學課程中為什么要講微積分初步?

題型:問答題

已知,,(1)求tan2α的值:(2)求β。

題型:問答題

案例:某教師在對根與系數(shù)關系綜合運用教學時,給學生出了如下一道練習題:設α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學生的解答過程如下:利用一元二次方程根與系數(shù)的關系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學思想方法。

題型:問答題

已知函數(shù)f(x)=x-alnx(a∈R)(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。

題型:問答題

甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關成功的概率;(2)設甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學期望。

題型:問答題

已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;(2)當a·b取得最大值時,求實數(shù)λ,使a+λb的值最小,并對這一結(jié)論作出幾何解釋。

題型:問答題

為什么在數(shù)學教學中要貫徹理論與實際相結(jié)合的原則?

題型:問答題

如何處理面向全體學生與關注學生個體差異的關系?

題型:問答題

在三角形ABC中,∠BAC=90°,AB=AC,若點D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。(1)若點D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關系,并結(jié)合圖2給出證明。(2)若點D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關系式。

題型:問答題

高中"集合與函數(shù)概念實習作業(yè)"設定的教學目標如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;②體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;③在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。完成下列任務:(1)根據(jù)教學目標,設計一個合理的課堂準備;(2)確定本節(jié)課的教學重點和難點;(3)給出本節(jié)課的教學過程。

題型:問答題